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F-type centres and hydrogen anions in MgO: 
Hartree-Fock ground states 

Ravindra Pandeyt and John M Vail 
Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2 

Received 7 June 1988 

Abstract. Second-neighbour defect clusters, described in the Hartree-Fock approximation, 
with Kunz-Klein localising potentials out to fourth neighbours, embedded in an infinite shell 
model lattice, are analysed with consistent distortion and polarisation for F', F, [H-]+, and 
[H2-In defects in MgO. Basis sets for the defects are optimised, and are improved by 
recontraction for the first and second neighbours. Questions of total energy, nearest-neigh- 
bour displacements and localisation are addressed for each defect. For the F+ centre, its 
ground state in relation to the valence band is discussed, as is the localisation of its unrelaxed 
excited state. For the F' and [H2-In centres, spin densities are evaluated at each step of the 
calculation, and compared with experiment. Calculations that completely neglect the ion- 
size effect of all ions except at the defect centre give some qualitatively plausible results. The 
full-cluster results are used to derive short-range shell model parameters for H- and H2- in 
MgO. The method and results are critically reviewed. 

1. Introduction 

In MgO, a single electron bound in an oxygen vacancy is called an F+ centre and two 
such electrons constitute an F centre. The F+ centre can be optically excited and this is 
followed by relaxation of the surrounding lattice with the bound electron in its excited 
state, and subsequently by de-excitation through photon emission. While a similar 
sequence may occur for the F centre, it is not the dominant process that arises from 
optical excitation. The most recent indication (Orera and Chen 1987c) is that some 
defect complex involving an H- ion plays an intermediary role between excitation 
and emission processes. Specifically, excitation is followed by spontaneous thermal 
ionisation of the F centre, to become an F+ centre, with the liberated electron migrating 
through the conduction band to be trapped by the H- complex, denoted [Hi]', where 
x indicates the presently unidentified defect element associated with an H- ion, and the 
superscript + indicates that the complex has net charge (+e) relative to the rest of the 
crystal lattice. The electron trapping converts [H;]' to [H;]'. The [Hi]' defect can be 
thermally ionised, with the liberated electron migrating to an F+ centre, which traps it 
in an excited state, thereby becoming an F centre, and subsequently de-exciting through 
photon emission. This stage of the process is the characteristic thermoluminescence of 
the F centre in MgO. 
t Present address: Department of Physics, Michigan Technological University, Houghton, Michigan 49931, 
USA. 
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Before the recent work of Orera and Chen, it was thought (Summers et a1 1983) that 
an H- ion alone (denoted [H-]+) was involved in the F-centre luminescence in MgO, 
through electron trapping to form [H2-I0, and subsequent thermal ionisation. Other 
recent work by Orera and Chen (1987a) indicates that this is indeed the case in CaO. 
Although it may not be of principal importance for F-centre luminescence in MgO, the 
H2- ion can exist in that crystal, and its spin density has been determined experimentally 
both at the hydrogen nucleus (Tombrello et a1 1984) and at the nearest-neighbour Mg2+ 
nuclei (Orera and Chen 1987b). 

The optical excitation and emission processes of the F centre in MgO are well 
established (Chen et a1 1969, Kappers et a1 1970), and its corresponding electronic states 
have been analysed theoretically (Wilson and Wood 1976, Summers et a1 1983). The 
optical processes of the F+ centre in MgO are also well established (Henderson and King 
1966, Chen et a1 1969, Kappers et al1970), and the present authors with collaborators 
have done preliminary theoretical work on the corresponding electronic states (Vail et 
a1 1984,1987, Vail and Pandey 1985). 

We have undertaken a theoretical study of the defects F,  F+, [H-]', and [H2-I0, 
aware that ultimately EH;]' and [Hi]'  must also be understood for a clear picture of 
the F-centre optical cycle in MgO. We believe that these centres provide a very sensitive 
test of any method of simulating defects in ionic crystals. They include the following 
features: (i) charged (F+ and [H-]+) and uncharged (F and [H2-Io) defects; (ii) spin- 
paired electrons (F and [H-]+); (iii) unpaired electrons, inducing spin polarisation (F' 
and [H2-] O); (iv) vacancy-centred electrons (F' and F) and nuclear-centred impurity 
defects ([H-I+ and [H2-I0); and (v) diffuse states for the outer electron of [H2-I0 and for 
the excited state of the F centre. Because the energies of different states of a given 
defect, and of different combinations of defects, need to be compared to reasonably 
high accuracy ( s O . 1  eV) in analysing the defect processes, the total energy of the defect 
and its embedding crystal lattice needs to be estimated accurately and consistently. This 
requires that we take into account (i) the effect of the defect in significantly perturbing 
the detailed electronic structure of nearby ions; (ii) the electronic structure of the 
embedding lattice; (iii) the lattice distortion in terms of nuclear displacement from 
perfect lattice equilibrium positions; (iv) long-range dielectric polarisation of the lattice 
in the case of charged defects such as F+ and [H-]'. In addition, particularly for the case 
of diffuse defect electrons , dynamic electron-lattice correlation is likely to be significant. 

In this paper we report results from the first stage of investigation of the four related 
defects F, F+, [H-]+, and [H2-Io in MgO, incorporating all the aspects of defect-lattice 
interaction mentioned above, except for dynamic electron-lattice correlation. Our 
approach is to describe the defect and a small number of its surrounding ions as a 
molecular cluster, treated quantum-mechanically, embedded in a crystal lattice that 
is described by the classical shell model. The quantum-mechanical treatment of the 
molecular cluster is based on the unrestricted Hartree-Fock self-consistent field approxi- 
mation with many-body Rayleigh-Schrodinger perturbation theory correlation cor- 
rection. In the present work the correlation correction is not included. In $ 2  the method 
is described in more detail. 

In 8 3 our calculations and results are described in detail. Since they are quite 
extensive, Q 3 is subdivided as follows. In § 3.1 a minimal basis set of 02- in MgO is 
derived. In § 3.2 optimal basis sets are determined for each of the four defect centres in 
a fixed nearest-neighbour molecular cluster. In § 3.3 quantum mechanical features of 
the embedding lattice are refined by (i) optimising the nearest-neighbour Mg2+ basis 
sets for a given set of primitive functions, and (ii) enlarging the molecular cluster to 
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include second-neighbour 02- ions as derived in 9 3.1, and also taking into account the 
electronic structure of the lattice to fourth neighbours. Our calculated F+-centre results 
are here compared with those of other authors. In § 3.4 the minimum energy of the 
entire lattice, including the defects, is estimated, taking account of nuclear displacements 
from perfect lattice equilibrium positions, as well as dipole polarisation of ions that are 
not included in the molecular cluster. Also in this section, total energies and orbital radii 
are summarised. Our calculated results for the F, [H-]+, and [H2-I0 centres are then 
compared with those of other authors. In § 3.5 spin densities at the hydrogen nuclei in 
[H2-I0, and at nearest-neighbour Mg2+ nuclei in both [H2-I0 and F+,  are calculated and 
compared with experimental values. In § 3.6 a preliminary analysis of the optically 
excited unrelaxed excited state of the F+ centre is presented. In § 3.7 a single-site 
description of the defects is presented, ignoring all quantum-mechanical features of the 
surrounding lattice. In 0 3.8 short-range shell model parameters are derived for H- and 
H2- interactions with both Mg2+ and 02- in MgO. The results given in § 3.1, and all 
results for the F+ centre, are taken from Pandey (1988). 

The calculations of 9 3 illustrate how most of the essential features of a defect system 
can be systematically incorporated into a theoretical simulation. Furthermore, they 
establish the necessary foundation for further analysis of these particular defects, and 
correctly represent some of their properties. Nevertheless, they are incomplete, and in 
§ 4 their limitations are discussed critically to indicate what an ideal, complete analysis 
would entail. Finally, in § 5 the useful results obtained in this work are summarised. 

2. Method 

We apply the minimum energy principle to an infinite crystal containing a defect. This 
consists of two parts: the defect cluster, which incorporates the molecular cluster, and 
the embedding classical shell model lattice (see for example Catlow et a1 1982). The 
defect cluster will contain all ions that are significantly affected by the defect, including 
if necessary some shell model ions. The harmonic distortion and polarisation of the 
embedding lattice are determined by simulating the molecular cluster by a set of point 
charges whose low-order electrostatic multipole moments match those of the molecular 
cluster. We denote the energy of the embedding lattice containing these cluster point- 
charge simulators by EH. We denote by EA the energy of the molecular cluster electrons 
interacting among themselves and with: (i) the point charges of bare cluster nuclei, (ii) 
shell model ions of the defect cluster and of the embedding lattice, and (iii) any potentials 
that are added to shell model ions near the defect. The total energy is then 

E = (EH + EA + Ec - E,) (2.1) 
where Ec includes the Coulomb energy of bare nuclei of the cluster, and subtracts the 
Coulomb interaction energy among the point-charge molecular cluster simulators. Also 
in equation (2.1) E, consists of any short-range shell model ion interactions in EH that 
are included quantum-mechanically in EA. Thus Ec and Es eliminate double counting 
of energies in EH and EA. 

The total energy E in equation (2.1) is minimised with respect to all shell and core 
positions and simultaneously with respect to variational parameters in the molecular 
cluster wavefunction. This minimisation is updated while the nuclear positions of the 
molecular cluster are varied to give overall minimisation of E. This variation may be 
extended to ions outside the molecular cluster if the multipole matching has not been 
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carried to a high enough order. The entire process is carried out in a single calculation 
by a program named ICECAP, described by Harding et a1 (1985). We believe that without 
the flexibility and automated nature of this program, investigations of the sort reported 
here would be impractical. ICECAP has two major components: the Harwell HADES 
program (Norgett 1974, Catlow 1982), which evaluates the classical energy EH vari- 
ationally, and a Hartree-Fock program by Kunz (unpublished) that evaluates EA in a 
given configuration of molecular cluster nuclei and lattice point charges. 

The classical calculation of E,  here requires knowledge of the lattice structure (MgO, 
rocksalt structure), the nearest-neighbour lattice spacing, denoted a (2.106 A), and the 
ionic charges for both host ions and defect centres. Thus we have charge (-e) for F+ and 
H-,  and (-2e) for F and H2-. Also required are shell model parameters, which we have 
taken from Sangster and Stoneham (1981), in which Mg2+ is unpolarisable and has 
negligible second-neighbour short-range interaction, in contrast to 02-. For further 
details see § 3.8. 

The quantum-mechanical molecular cluster energy EA is evaluated in unrestricted 
Hartree-Fock self-consistent field approximation in this work. The shell and core posi- 
tions of the embedding lattice are taken from the calculation of EH. In this work ions 
were included only to 5.6 nearest-neighbour distances from the defect centre. It is 
preferable (Vail and Woodward 1988) to ensure that this point-charge array has only 
the net charge of the defect, or even better to include the infinite lattice by an adaptation 
of the Ewald method (Ewald 1921, Norgett 1974). Nevertheless, we do not believe 
that our results are affected by this limitation, because the Madelung potential in our 
molecular cluster is reasonably accurate (Vail et a1 1984), and our wavefunctions are 
reasonably localised within the embedding region. 

In the Hartree-Fock approximation a many-electron wavefunction is a Slater deter- 
minant of one-electron functions (q1, q2, . . . qN)  that spans a Hilbert space manifold 
of Ndimensions, if there are Nelectrons. When this manifold is determined variationally 
by minimising the N-electron energy, we obtain the Fock equation for the one-electron 
functions: 

FVI = E l q ,  j =  1 , 2 , . .  . N ( 2 . 2 )  
where q, are spin eigenstates in the unrestricted Hartree-Fock approximation. For a 
ground state, the solutions corresponding to the N lowest Fock eigenvalues E, are 
normally appropriate. For excited states, and for the perturbation theory correlation 
correction (Goalwin and Kunz 1986, Kunz et a1 1988), additional Fock eigenstates will 
be required. Thus, in general, we seek a non-minimal set of the lowest eigenstates of 
equation (2.2). This in turn can be done variationally. We follow the approach of 
Roothaan (1951) and expand ql as a linear combination of atomic-like orbitals: 

N' 

qj = c k j x k  
k =  1 

where, ignoring the spin dependence, X k  is Gaussian localised with spherical harmonic 
angular dependence: 

x k ( r )  = n k  exp(-aklr - R , / * ) y ? ( Q i ) .  (2.4) 

Such a function is called a primitive. In equation (2.4), nk is a normalisation factor, R,  is 
the centre of localisation, Ql is the angular position of (r - R , ) ,  Y;l is a spherical 
harmonic, and 1, m and i depend on k.  
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Suppose we have a given set of N’ exponential coefficients CY. If there were no self- 
consistent field term in F(equation (2.2)), then minimising E, with respect to coefficients 
ck, of equation (2.3) would give a matrix eigenvalue equation of order N ’ .  Since there 
is a self-consistent field, however, the matrix equation must be solved iteratively to give 
N’ eigenvalues E, and N‘ eigenvectors C, with elements ck, ( k  = 1, 2, . . . A’’). The N -  
electron energy is a function not only of these coefficients C,, but also of the exponential 
coefficients a k  (equation (2.4)). In principle, these should also be treated variationally, 
with a sufficient number of them determined for a given molecular cluster so that the 
overall enegy minimisation cannot be significantly improved by adding more. This 
procedure is illustrated in 0 3.2 for the central site of the defects. When the process is 
impractical because of computational limitations, one may use, and possibly augment, 
primitive sets that have been determined in other calculations, as we do in §§ 3.1 and 
3.3. 

Since molecular cluster calculations are typically large in terms of computer space 
and time, it is sometimes advantageous to reduce the number of linearly independent 
functions x k  in equation (2.3). This is done by performing a preliminary analysis and 
then fixing the ratios of sets of coefficients, corresponding to sets of exponential CYS. 

Then equation (2.3) would be replaced by 

where 

xk = 2 a A k x A  * (2.6) 
A 

The xE. are given by equation (2.4) and the fixed coefficients aAk are taken from the 
preliminary analysis. This procedure, called contraction, will be used in § §  3.1 and 3.3. 
The effect is to have a smaller-order matrix problem for a given set of primitives, since 
not all the primitives will now have independently variable coefficients. Those functions 
with independent coefficients, x; in equation (2.5), are called basis functions. If the sum 
in equation (2.6) contains more than one primitive, then x; is called a contracted basis 
function. 

When a molecular cluster is embedded in a crystal, the question of appropriate 
boundary conditions arises. For a cluster that is strongly localised, it may be valid simply 
to treat the surrounding ions as point charges, as occur in the shell model. If the cluster 
is not so localised, then the electronic structure of the surrounding ions needs to be taken 
into account. This can be done by introducing Kunz-Klein localising potentials (Kunz 
and Klein 1978, Gilbert 1964, Kunz and Vail 1988) on the relevant sets of embedding 
lattice ions. The method has the following advantages. 

(i) It is rigorously a part of the Hartree-Fock approximation, applied to the molcular 
cluster as part of an all-electron consideration of the whole crystal. 

(ii) It participates in the entire variational process described above for the Hartree- 
Fock solution. It therefore avoids the unphysical effects of cluster-lattice orthog- 
onalisation procedures, which either reduce the variational manifold spanned by the 
basisfunctionsx;, equation (2.6), or project the solution out of the iteratively converged 
manifold, or project the representation of cluster-ion electronic structure out of the 
manifold determined for it by perfect-lattice calculations. 

(iii) Being an effective potential, it does not contribute to the self-consistent field of 
the molecular cluster. It therefore does not increase the two-electron integral list, nor 
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enlarge the dimensionality of the Fock matrix. A localising potential is determined for 
each ionic species by self-consistent perfect-lattice molecular cluster calculations centred 
on each species, using a program by Kunz (unpublished). The resulting potentials are 
then fitted to a set of Gaussian primitives (equation (2.4)) using a program by Keegstra 
and Kunz (unpublished). They lead to a modified Fock equation, requiring a different 
total-energy algorithm (Kunz and Vaill988) from that of the original molecular cluster 
Hartree-Fock problem. They are applied in § 3.3. 

For some processes, we need to determine states for which the lattice is not relaxed 
to minimum energy self-consistently with the defect. An example is the final state of an 
optical transition, which occurs faster than the ability of the lattice to respond. It may 
be that, in terms of the shell model, only the cores remain fixed in their ground state 
positions, while the shells adjust instantaneously to the transition. The other extreme is 
where neither cores nor shells readjust at all during the transition. Both approaches are 
options in the ICECAP program, and the second approach is applied in 9 3.6. 

3. Calculations and results 

3.1. 02- in MgO 

Aguiding attitude in our work is to contribute to a body of results that can be meaningfully 
assessed because they all derive from the same kind of model, treated by the same 
methods, using the same approximations. Currently, one necessary approximation is 
that the primitive sets and their contractions (equation (2.6)) cannot always be deter- 
mined optimally for all the ions of a molecular cluster. We must then rely on the work 
of others, and the most extensive compilations of Gaussian basis sets are those of 
Huzinaga and co-workers (1971,1984) for free atoms and ions. Now because Mg2+ is a 
tightly bound cation, we believe that the primitive sets of Huzinaga (1984) for neutral 
Mgo or for Mg2+ should be useful in the MgO crystal. However, 02- is not a bound ion 
in free space, and therefore it requires special attention. 

We have analysed an oxygen-centred nearest-neighbour molecular cluster 
(Mg2')6(02-) embedded in MgO, with perfect lattice spacing. Second-neighbour 02- 
ions and third-neighbour Mg2+ ions have Kunz-Klein localising potentials associated 
with them. The Mg2+ basis set was the (4,3/4) contraction of Huzinaga (1984), meaning 
two s-type contactions of four and three primitives, respectively, and a p-type contraction 
of four primitives. The 02- ion is based on the (4,3/4) contaction for 0' of Huzinaga 
(1984). First, the total energy is minimised with respect to independent variations of the 
coefficients of all the oxygen primitives (we say the 0' basis set is decontracted). The 
exponential coefficients of longest range of both s- and p-type primitives were then 
optimised. The coefficients of the s-type primitives are obtained for the oxygen ls- and 
2s-like eigenstates from that calculation, and are then fixed in relative magnitudes 
(contracted), and the calculation is repeated with p-type primitives treated inde- 
pendently. For this second calculation, the basis set is (7,7/1, 1 ,1 ,1 )  contraction. The 
resultant coefficients for the oxygen 2p-like states are then contracted, resulting in a 
(7,7/4) basis set of contractions. In going from the Oo (4,3/4) contraction to the totally 
decontracted 02-, the energy dropped by 10.78 eV. On recontracting, the net rise in 
energy was 0.10 eV. 
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Table 1. Contracted basis sets for free 0" (Huzinaga 1984), and for 0'- in MgO (present 
work). For the primitive functions, exponential coefficients (Y are in Bohr atomic units 
a i 2 ,  and ranges R (equation (3.1)) are in units of MgO nearest-neighbour distances. 

Orbital (Y R 0" coeff. 02- coeff. 

1s 821.83934 
123.68182 
27.66617 
7.299 57 

10.606 96 
0.91764 
0.28 

2s 821.83934 
123.68182 
27.66617 
7.29957 

10.60696 
0.91764 
0.28 

2P 17.75035 
3.864 68 
1.04772 
0.28 

0.006 
0.016 
0.034 
0.066 
0.055 
0.185 
0.336 

0.006 
0.016 
0.034 
0.066 

0.185 
0.336 

0.042 
0.090 
0.174 
0.336 

0.055 - 

0.0355522 
0.2469282 
0.862 248 3 
1.0 

-0.1515865 
1 .0 
0.845 0905 

0.078 879 6 
0.4367318 
1 .0 
0.867 7474 

0.040 206 
0.282 368 
0.946149 
1.0 
0.110281 
0.091509 

- 0.027 930 

-0.008556 
-0.064242 
-- 0.230 668 
-0.253617 
-0.161864 

1.0 
1.377273 

0.092957 
0.514539 
1.0 
1.648566 

In table 1, we show the (4,3/4) contraction coefficients for free 0' and the (7,7/4) 
contraction coefficients for 02- in MgO with the corresponding exponential coefficients 
a ,  with a re-expressed in terms of a range R which we define by 

R = (2a)-'/'. (3.1) 
This range is the distance at which the squared magnitude of an s-type primitive drops 
to e-l of its maximum, and of a p-type primitive is a maximum. We note from table 1 
that the 1s- and 2s-like orbitals of 02- in MgO take up significant contributions from the 
2s and 1s primitive sets, respectively, of Oo. Furthermore, we note a significant increase 
in the coefficients of the longest-range 2s and 2p primitives in going from free 0' to 02- 
in MgO, an effect that seems reasonable in view of the Coulomb and Pauli repulsions 
associated with the two extra electrons. A significant consequence of improving the 
contractions as in table 1 is described at the end of Q 3.3. For completeness, we mention 
that Causa et aZ(1986) have developed an (8,6/6) contracted set for 0'- in MgO. 

3.2.  Defect basis sets 

The basis functions centred on the defect site, an 02- vacancy in the case of F+ and F 
centres, and substitutional at an 02- site for H- and H2- ions, need to be determined. 
We have done this by using a nearest-neighbour molecular cluster (Mg2+)6(d) where 
d stands for F+,  F ,  [H-I+, or [H2-]'. The approach seems to be justified by the results as 
we shall see, except for the case of H2-. At  this stage of the analysis, the (3,3,3/3) 
contracted basis set for neutral Mgo from Huzinaga (1984) has been used, with the 3s 
orbital eliminated, leaving (3,3/3), and these nearest-neighbours have been kept at 
their perfect lattice sites. 
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Table 2. Optimal sets of primitives for defects in MgO: exponential coefficients (Y (units 
a ; * ) ;  ranges R (units nearest-neighbour distances). equation (3.1); relative coefficients 
C , ,  equation (2.3); and energy lowering, A E  (ev) .  

Defect a R G, IS(+) IS(-) 2 ~ ( + )  A E  

F' 0.079 485 

F 0.095888 
0.066706 

[H-I- 0.18012 
1.42032 
9.87980 
0.45093 
0.066 706 
0.025 563 

[H2-]" 0.17615 
0.0070458 
2.22684 
0.057 51 7 

23.006 85 
0.45093 

0.63 

0.57 
0.69 - 

0.42 
0.14 
0.06 
0.26 
0.69 
1.11 

0.42 
2.12 
0.12 
0.74 
0.04 
0.26 

1.0 

1.0 
0.14052 

1.0 
0.18834 
0.03001 
0.12976 
0.05386 
0.016 67 

- 
0.15 

- 
0.27 
0.14 
0.10 
0.01 

1.0 1 .o 0.15330 - 
-0.00349 -0.00358 1.0 - 

0.15621 0.15554 -0.00039 1.84 
0.08598 0.08662 -0.39274 0.67 
0.01360 0.01354 -0.00082 0.12 
0.28589 0.28275 -0.08463 0.26" 

[' a,  iterated 

The procedure has been to begin with a simple s-type primitive, except in the case 
of [H'-]O, and to vary its exponential coefficient a until the total energy of the defect 
crystal was minimised to an accuracy of the order of 0.01 eV. This includes polarisation 
of the embedding shell model lattice, which is negligible for the electrically neutral 
defects F and [H2-I0, but definitely not negligible for Ff and [H-]+. One then adds a 
second s-type primitive, optimising its a in the same way, holding the first a fixed, and 
then iterating until both as are simultaneously optimised self-consistently. In practice, 
very little energy lowering ensues from the iteration, and so with one or two exceptions no 
further iteration was carried out as additional primitives were introduced and optimised. 
The process was terminated when the point was reached where adding a new primitive 
lowered the total energy by only about 0.01 eV. In the case of [H2-Io, the two initial 
primitives, roughly representing the doubly occupied 1s state and the singly-occupied 
2s state respectively, were determined self-consistently, and then the same procedure 
was followed as for the other defects. 

In table 2 the results of these calculations are given. They include (i) exponential 
coefficients a, (ii) the ranges R,  equation (3.1), (iii) their relative coefficients which, 
apart from a normalisation factor are the C, of equation (2.3), with j referring to 
molecular orbitals that are dominated by the defect-centred primitives labelled k ,  and 
(iv) the magnitude A E  by which the total energy is lowered by introducing each additional 
primitive. In table 2 we note that three sets of coefficients are given for [H2-I0. They 
correspond to the two 1s-like states of opposite spin, (+) and (-) respectively, and to 
the2s-like state (+). Comparing the two 1s-like states, we clearly see the spin polarisation 
effect, which contributes to the spin density, discussed in § 3.5. 

3.3. Embedding lattice: quantum features 

We now wish to introduce details of the electronic structure of the surrounding lattice 
into the defect calculation. In § 3.2 the nearest-neighbour Mg2+ were fully contracted 
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Table 3. Contracted basis sets for free Mg2+ (Huzinaga 1984). and for Mg2+ nearest- 
neighbours of F+ centres in MgO (present work). Exponential coefficients (Y in units 
a i 2 .  

Orbital (Y Free MgZ- coeff. Mg’+ coeff. (MgO) 

1s 654.890 970 
98.727577 
21.335201 
28.128657 
2.295 112 
0.799 752 

2s 654.890970 
98.727 577 
21.335201 
28.128657 

2.295112 
0.799752 

2P 23.805 108 
5.116593 
1.231392 

0,101 090 5 
0.583 6748 
1 .o 

-0.1444224 
1.0 
0.793 9727 

0.1953710 
0.784 804 7 
1 .0 

0.122050 
0.681 394 
1.0 
0.175827 
0.153 987 

-0.059 163 

-0.028 544 
- 0.174 623 
-0.300956 
-0.134815 

1.0 
0.793 789 

axial 
0.195 149 
0.783230 
1.0 
non-axial 
0.195 777 
0.786754 
1.0 

with coefficients appropriate to the free atom or ion. They were therefore largely unable 
to respond to the embedding lattice and defect. We have therefore decontracted and 
recontracted them in the same way as described for 02- in 63.1, but now in the 
(Mg2+)6(d)l cluster, with the defect basis sets of table 2 left uncontracted. In this way, 
the defect and its nearest neighbours adjust to each other optimally for the given 
primitive sets in the embedding lattice. At  this stage, the nearest neighbours were still 
held at their perfect lattice sites, and the embedding shell model lattice was allowed to 
polarise. The results are exemplified by the F+ centre in table 3, where ‘axial’ and ‘non- 
axial’ refer to p-type functions with axes directed along and transverse to the line joining 
the Mg2+ ion to the defect, respectively. The difference between axial and non-axial 
basis functions represents polarisation of the Mg2+ ions by the defect. Similar results 
were obtained with the other defects, in all cases producing a total energy reduction of 
approximately 15 eV. This alone indicates the importance of such a correction, and the 
conclusion is borne out by the spin density analysis of Q 3.5. 

Since the nearest neighbours are significantly perturbed by the defect, and the defects 
themselves are not very strongly localised at their central sites (see § 3.4), we next 
increased the cluster size in two ways simultaneously. First, we added the twelve 
second-neighbour 02- ions to the Hartree-Fock cluster, which now becomes 
(Mg”)6(02-)12(d)l. The Mg2+ and 02- basis functions (90 in all, for a total of 180 
electrons) are kept fully contracted because of the size of the calculations. Second, we 
added Kunz-Klein potentials to third-neighbour Mg2+ ions and to fourth-neighbour 02- 
ions. In this way, the electronic structure is taken into account for all nearest neighbours 
of the Mg2+ ions which themselves are nearest neighbours of the defect. Since the defect 
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Table 4. F+ centre in MgO, ground-state properties calculated with free O'basis, and with 
02- basis for MgO (table 1). Range R and orbital radius ( Y ~ ) ~ / ~  in units of lattice spacing. 

Mulliken population 

R ( Y * ) ] / ~  F+ Mgz+ 0 2  

Oo basis 0.53 0.87 1.71 10.0000 9.9409 
02- basis (MgO) 0.50 0.85 1.08 9.9993 9.9940 

basis sets were kept uncontracted throughout this work, they now respond to the 12 
rather large second-neighbour 02- ions at a distance of d 2  times that of the six nearest- 
neighbour Mg2+ ions. They, of course, respond to the third- andfourth-neighbour Kunz- 
Klein potentials as well. The effect is again well illustrated by the spin density results of 
§ 3.5. 

These calculations also lead to a significant example of the importance of an appro- 
priate basis set, as shown in table 4. With the 02- basis set of § 3.1 optimised to the MgO 
crystal lattice by recontraction, one finds the Mulliken population of the vacancy-centred 
F+ orbital to be 1.08. Since this orbital is a ls-type Gaussian with (r2)1/2 = 0.85a, it is fair 
to interpret this by saying that almost exactly one electron is trapped in the vacancy. On 
the other hand, with the original contractions of 02-, appropriate to the free neutral 
oxygen atom, one finds a Mulliken population of 1.71, with similar localisation. In this 
case one must say that there is considerable charge transfer to the vacancy, about 0.71e, 
seen in table 4 to come essentially from the second-neighbour 02- ions. Furthermore, 
an examination of the Fock eigenstates shows that with our best 02- basis set, the F+ 
centre lies above the valence band (i.e., above the occupied Mg2+ and 02- molecular 
orbitals), while for the inferior 02- basis set there are equal spin-up and spin-down 
contributions from the vacancy at a level in the gap below the 02- 2p-like states, with 
some contribution from one spin at the top of the valence band. This same charge transfer 
effect (about 0.75e) has been found in an F+ centre calculation for MgO by Klein et a1 
(1987), and also for A1203 by Choi and Takeuchi (1983), who locate the localised state 
in the valence band gap below the 02- 2p-like states. In both of these works, lattice 
polarisation is neglected. One might then guess that the question of charge transfer 
hinges upon a competition between two screening mechanisms for the excess charge of 
the defect: one by long-range lattice polarisation and the other by short-range charge 
transfer. In our work, where long-range polarisation is always included, the charge 
transfer does not occur with our best 02- basis set, but does occur with an inferior set. 
For Klein et a1 (1987) and Choi and Takeuchi (1983), without long-range polarisation, 
the screening can occur only by charge transfer, and is observed in their calculations. 
Since our 02- basis sets are minimal, fully contracted sets, we do not consider the 
question to be definitively resolved here. Rather, we would like to see whether or not 
the system resists charge transfer when the second-neighbour 0'- ions are made more 
flexible by decontraction. Furthermore, the effect of correlation correction should be 
investigated, since it might be crucial in determining whether the vacancy tends to trap 
two electrons associated with a nearby hole, or simply traps a single electron. 

3.4. Lattice relaxation 

For the (Mg2+)6(02-),2(d) clusters with third- and fourth-neighbour Kunz-Klein 
potentials, we now minimise the total energy of the defect lattice by explicitly varying 
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Table 5. Defect lattice relaxation energies A E  (eV) for Ft, F, [H-I+, and [H2-I0 centres 
in MgO after successive steps of first and second neighbour displacements to relaxed 
positions d (units: fraction of perfect lattice distance). 

F' F [€<-I- [HZ-l0 

d A E  d AE d A E  d AE 

Mg2+ 1.03 0.35 0.985 0.05 1.06 1.12 1.07 1.41 
02- 0.97 1.75 0.98 0.30 0.97 0.96 0.97 1.12 
MgZf 1.03 0.66 1.03 0.24 1.03 0.29 

the nearest- and second-neighbour positions, and allowing the HADES part of ICECAP 
to determine the positions of all other ions in response to shell model forces. ICECAP 
will perform this procedure automatically, but because of the size of the calculation 
we were forced to perform it a step at a time. This was done by optimising the Mg2+ 
positions with the 02- ions held fixed, then optimising the 02- positions with Mg2+ fixed 
at the optimum positions of the first step, and then iterating the Mg2+ optimisation. The 
successive improvements in total energy with each of these three steps are shown in 
table 5 for each defect. From the results we conclude that ionic positions have been 
determined to within about 0.01 lattice spacings, and total energies to within 0.2 eV. 

Qualitatively, the near-neighbour displacements of table 5 are plausible. For each 
of the four defects the short-range repulsion is expected to be weaker than for the 
02- ion that it replaces. For the positively charged defects F+ and [H-I+, the 
polarisation effect succeeds in pushing nearest-neighbour cations outwards, while 
drawing second-neighbour anions inwards. The same thing happens with [H2-] O ,  to 
the same extent as for the other two, because the third 2s-like electron is so diffuse 
that the first and second neighbours lie well within its orbit, and are unaffected by its 
net charge. For the electrically neutral F centre, on the other hand, there is no 
Coulomb effect, and the weakened short-range force compared to that of 02- results 
in contraction of the surrounding lattice. This result disagrees with the conclusion of 
Summers et a1 (1983), who found a 3% outward relaxation for the nearest-neighbour 
Mg2+ ions of the F centre in MgO. While their treatment of the problem included 
most of the important features of the system, their modelling of ion-size and inter- 
ionic effects was less systematic and extensive than in the present work. 

In table 6 the results for each defect are summarised, including (i) total energy 
reductions due to defect basis optimisation, nearest-neighbour Mg2+ basis recon- 
traction, and lattice relaxation, (ii) total energy, (iii) nearest-neighbour Mg2+ and 
second-neighbour 02- positions, and (iv) orbital radius (r2)lI2, defined by 

(Y2)1'2 = ( Q ? d / r 2 / q d ) 1 ' 2  (3.2) 
where q d  is the Fock molecular orbital eigenstate that is dominated by defect-centred 
basis functions. In the case of [H-]', Q)d lies between the 02- 2s and 2p bands, and 
contains significant components of these 02- orbitals, so that in this case ( Y ~ ) ~ / ~  is less 
meaningful than for the other defects. We note from table 6 that the orbital radius of 
the [H2-I0 2s-like state extends well beyond the last (fourth) neighbours whose 
electronic structure has been included, and that its total calculated energy is greater 
than for [H-]+, a result that does not seem reasonable. We shall see that the spin 
density results of § 3.5 further indicate the inadequacy of our treatment of [H2-l0, 
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Table 6. Summary of results for F-, F, [H-]-, and [H2-Io centres in MgO: energy reductions 
(eV) due to defect basis optimisation A E l ,  Mg2- basis recontraction AE2.  and lattice 
relaxation AE3;  total energy E (ev) .  nearest Mg2- and second 02- neighbour positions d ,  
and d 2 ,  respectively (units: fraction of perfect lattice distance); orbital radius (r')''' (units: 
nearest-neighbour distances). 

~~ 

AEI - 0.15 2.72 2.89 
AE2 15.13 14.90 15.13 15.03 
A E 3  2.76 0.35 2.33 2.82 
E - 56 535.66 - 56 533.78 - 56 553.8 1 - 56 552.48 
dl 1.03 0.985 1.03 1.03 

(r2)l  ' 2  0.85 0.79 1.0" 2.95' 
d2 0.97 0.98 0.97 0 97 

Between 02- 2s- and 2p-like bands. 
' H2-2s-like state. 

Table 7. Spin densities (units A-3) for defects (d) F- and [H2-]' in MgO, evaluated at 
various stages of approximation. and compared with experiment, at sites s. 

(MgZ-)6(d)l (Mg2+)dO2-),2(d) 1 

d(s) Contracted Recontracted Unrelaxed Relaxed Experiment 

F+(Mg2+) 0.660 0.420 0.525 0.171 0.274" 
[H2-Ifl(p) - 0.027 0.123 0.093 0.23gb 
[HZ-]fl(Mg2+) - 0.010 0.017 0.013 0.754' 

a Unruh and Culvahouse (1967). 
' Orera and Chen (1987b). 
' Tombrello et a1 (1984). 

which will be discussed there. The theoretical analysis of [H2-Io by Tombrello et a1 
(1984) obtained an average radius of 1.85 lattice spacings: less than our result, but 
still significantly diffuse. Tombrello et a1 included the ion-size effect only to nearest 
neighbours (by orthogonalisation), and ignored lattice relaxation and spin polarisation. 
An explanation of our larger calculated radius may be that our wider, but still 
inadequate, ion-size barrier causes 'spilling' of the 2s-like orbital to be more spread 
out. The mechanism is described in 0 3.5. 

3.5. Spin densities 

In the unrestricted Hartree-Fock approximation, spin-up and spin-down electrons are 
treated separately, so that if there is an unpaired electron, as in the F' and [H2-I0 
centres, the Mg2+ and 0'- ions in the defect cluster will be spin polarised. We have 
calculated the net many-electron spin density at nearest-neighbour Mg" nuclei for 
both defects, and at the proton for [H2-Io. The results are given in table 7 for three 
stages of the calculations described in 00 3.2,3.3 and 3.4, namely (i) with an unrelaxed 
(Mg2+)6(d)l cluster, first with the original basis, and then with the Mg2+ basis recon- 
tracted, (ii) with an unrelaxed (Mg2+),(02-)12(d)l cluster, and (iii) with the cluster 
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relaxed. In this way we can see the effects of recontracting the Mg2' basis, of second- 
neighbour 02- ions, and of first- and second-neighbour relaxations consistent with the 
embedding lattice. We see that the spin densities are very sensitive to all three effects. 
The calculated results can also be compared with experimental values obtained from 
measured isotropic hyperfine constants (Unruh and Culvahouse 1967, Orera and Chen 
1987b, Tombrello et a1 1984). From table 7 we see that the final calculated value for 
the F+ centre is 62% of the experimental value, which is quite good agreement 
considering the sensitivity to basis set, cluster size, and cluster relaxation. For the 
[H*-]' centre the final agreement at the proton site (p)  is 39%, again not bad. 
Incidentally, it is very close to the value of 0.095 k3 (40%) calculated by Tombrello 
et a f  (1984). However, at the nearest-neighbour Mg2+ nuclei the agreement is neg- 
ligible, only 2%. We have noted in table 6 that the unpaired 2s-like electron in [H2-I0 
has a calculated orbital radius of about three lattice spacings (a) ,  while the electronic 
ion-size effect has only been carried out to a distance of (2a). It may be that because 
this potential barrier is cut off at (2a), the 2s-like electron spills over (or tunnels 
through) into the surrounding lattice, and if the ion-size effect were extended further, 
it might force the electron back into a more localised state. This spurious effect is 
quite common in calculations of this type and will be illustrated explicitly in the next 
section. 

The spin polarisation effect can be clearly seen in the two ls-like electronic states 
of [H2-I0. If the 2s-like electron is given spin up, then the ls-like states of spin up and 
down have orbital radii 1 . 0 2 5 1 ~  and 1.0237a, respectively, with an energy separation 
0.0279 eV. 

3.6. F+-centre excited state 

Optical excitation of the F+ centre is not accompanied by instantaneous relaxation of 
the lattice. In the Franck-Condon approximation, the lattice does not relax at all 
during the transition. We may assume that this applies at least to the nuclei, and to 
shell model cores. At  one extreme, one might assume that it applies to all but one 
electron, including the shells of shell model ions. At the other extreme, one might 
assume that shells and all electrons of the cluster respond instantaneously to the 
transition. We have carried out a preliminary analysis on the basis of the former 
assumption, namely that shell model shells as well as cores are frozen in the ground- 
state configuration during the transition, as are nuclei of the cluster, and that fur- 
thermore the contractions used for Mg2+ and O*- cluster ions in the ground state are 
maintained throughout the transition. Thus there is very little flexibility in the cluster 
electronic configuration, and it cannot adjust significantly to the change of defect state 
in the transition. 

Our procedure was to minimise the unrelaxed excited state energy with respect to 
variations in a (see equation (2.4)) for a vacancy-centred p-type function. The results 
are worth describing in detail. Four calculations were performed. First the entire 
lattice was described by the shell model: the Hartree-Fock 'cluster' consisted of a 
single electron. The range of the excited-state p-type function (see equation (3.1)) 
was found to be approximately half the lattice spacing (a). Then an (Mg*+),(d), cluster 
was analysed, with d = F+,  and the optimum range was found to be approximately 
1.52, with a subsidiary energy minimum occurring for a range of about 0 . 5 ~ .  (In this 
calculation, an augmented Mg2+ basis set was used, rather than the recontracted set 
of 8 3.3.) This effect represents the wavefunction spilling referred to at the end of 
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Table 8. Nearest-neighbour positions d (units: perfect lattice spacing), of F+, F, [H-]+, 
and [H2-l0 defects in MgO, with and without ion-size effect. 

F+ F Wl' [H2-la 

With 1.03 0.985 1.03 1.03 
Without 1.03 0.92 1.02 0.97 

§ 3.5, due to the limited extent of the ion-size-effect barrier. Where Kunz-Klein 
potentials were added to second, third, and fourth neighbours to simulate their 
electronic structures, the stabilisation energy of the spilt solution compared to the 
more localised subsidiary solution was reduced, but its range was somewhat increased, 
to almost 2a. Then, when the second-neighbour Kunz-Klein 02- ions were replaced 
by the all-electron description and incorporated into the Hartree-Fock cluster, the 
spilling effect disappeared, and only one minimum persisted, at a range of approxi- 
mately 0 . 5 ~ .  (In this calculation, the ( 3 , 3 / 3 )  contractions for 0' given by Huzinaga 
(1984) were used for 02-.) One conclusion from this result is that the Kunz-Klein 
ion-size effect as evaluated in this work is significantly weaker than that of a Hartree- 
Fock 02- ion. 

Finally, the last calculation described above was repeated with the presumably 
superior Mg2+ and 02- basis sets obtained in § §  3.3 and 3.1,  respectively. The 
localisation persisted. The calculated excitation energy was 7.59 eV, compared with 
the experimental value of 4.95 eV (Henderson and King 1966). We attribute the 
discrepancy mainly to the fact that the electronic structure of the lattice was largely 
incapable of responding to the transition of these calculations. Particularly, we would 
like to optimise the second-neighbour 02- basis set, and to allow shells to relax in the 
presence of the excited-state defect. This is probably more important than the nearest- 
neighbour Mg2+ ions, partly because the anions are more polarisable than the cations, 
but also because eight second-neighbour anions overlap relatively strongly with the 
defect's p-type wavefunction, compared to only two nearest-neighbour cations,. While 
this would lower the excited-state energy, it remains to be seen whether it accounts 
for the 2.64 eV discrepancy. 

3.7. Single-centre treatment of the defect 

It is commonly known that single-centre treatment of F-type centres, in which all ions 
of the crystal are described by the shell model, usually gives quite good results for 
calculated optical excitation energies (see for example Gourary and Adrian 1957). It 
is probably also widely understood that the corresponding states of the centre are not 
accurately described by such an approach. In this section we describe such calculations 
for the ground states only of the four defects F', F,  [H-]', and [H2-Io. 

We have used the procedure of 9 3.2 to obtain optimal defect basis sets. They turn 
out to be quite similar to those obtained in 9 3.2,  where full Hartree-Fock treatment 
of nearest-neighbour Mg2+ ions was included, while here these neighbours are shell 
model ions. Thus what is neglected here is the ion-size effect of the nearest (and all) 
neighbours. The positions of the nearest neighbours were then determined using 
ICECAP, which automatically varied them until total-energy minimisation was achieved, 
consistent with the defect centre and with the rest of the lattice. The nearest-neighbour 
positions obtained are given in table 8 ,  along with those obtained in 9 3.4, where ion- 
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size effects were included in detail. The result is that for the two positively charged 
defects, namely F+ and [H-]+, neglect of the ion-size effect (i.e., short-range repulsion) 
of nearest neighbours has little effect, since the system is dominated by Coulomb 
interaction. Correspondingly, for the electrically neutral F centre, which has a small 
inward nearest-neighbour displacement with ion-size effect, there is a significantly 
larger contraction without it. For the [H'-]O centre, the results with and without ion- 
size effect give opposite directions of nearest-neighbour displacement. The spin 
polarisation effect in the present case is extreme. If the 2s-like electron has spin up, 
it has orbital radius 1.04a, while the two ls-like electrons have radii 0 . 4 8 ~  for spin up 
and 0 . 1 6 ~  for spin down, with an energy separation of 3.016 eV. These differences are 
much greater than those found with ion-size correction in § 3.5. The fact that the 2s- 
like electron is much more localised in this case than in the presence of ion-size effect 
(2 .95~)  no doubt accounts for the difference in nearest-neighbour relaxation. In view 
of our earlier discussions of [H2-I0 in 8 0  3.4 and 3.5, the present result could even be 
qualitatively correct. 

Finally, we give the calculated total defect energies for a shell model lattice. For 
F+, F, [H-]+, and [H2-I0 they are respectively 18.47, 10.79, 1.80 and 0.63eV. We 
note that the ordering here, unlike that obtained in D 3.4, table 6, has the F-centre 
energy lower than the F+,  and [H2-Io lower than [H-]', as we would expect on the 
simple argument that the vacancy (or proton) trapping an additional electron would 
lower the system's total energy. If this argument is correct, it indicates that further 
accuracy is required in the cluster calculations in order to obtain absolute comparability 
among the defects. 

3.8. Short-range shell model parameters 

In the course of evaluating the lattice relaxation in § 3.4 we essentially obtained the 
total energy E as a function of nearest- and second-neighbour positions, d l  and d2 
respectively, as fractions of their distances from a central 02- site in the perfect lattice. 
This can be used to estimate short-range shell model parameters for H- and H2- ions 
interacting with Mg2+ and 02- in MgO. 

The argument is as follows. We assume that the approximation of pairwise inter- 
ionic forces is valid. For a large variety of ionic crystals, this is borne out by the success 
of shell model simulation of a wide range of properties (see for example Mackrodt 
1982). We then assume that our quantum-mechanical description of host-lattice 
ion interactions (in the clusters used in 8 3.4) is approximately equivalent to the 
corresponding shell model interactions. The work of Vail et a1 (1987) tends to support 
this assumption, although more work on the question would be useful. We then 
imagine a shell model of the MgO crystal containing a single H"- substitutional anion, 
for n = 1 or 2. We let the short-range (H"-)-(Mg2+) nearest-neighbour and (H"-)- 
(02-) second-neighbour interactions be denoted by subscripts k = 1, 2, respectively, 
and represent them by Buckingham potentials Bnk(Ank, p n k ,  Cnk; d k ) ,  where 

B(A,  p ,  C ;  d )  = A exp(-d/p) - Cd-6  (3.3) 

where (A,  p ,  C) are constants, characteristic of the pair of ion species nk, and the 
separation distances dk  are variable. Now if we use HADES to evaluate the total energy 
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Table 9. H”- ion (n  = 1 ,2 )  in MgO: ranges of first- and second-neighbour positions d ,  and 
d 2  (units: fraction of perfect lattice distances) used to determine shell model short-range 
potentials. 

Fixed Variable 

n =  1 d ,  = 1.06 
d 2  = 0.97 

d 2  = 1.0, 0.98, 0.96, 0.94 
d l  = 1.06, 1.05, 1.03, 1.01 

n = 2  d ,  = 1.07 dz = 1.0, 0.98, 0.96, 0.94 
d2 = 0.97 d l  = 1.07, 1.05, 1.03, 1.01 

ELo) for given values of d ,  while omitting Bnk for the defect, then the true shell model 
energy E@),  where (c) refers to classical, will be 

3 d 2 )  = ELo’ + 2 NkBnk(dk) (3.4) 
k 

where Nk is the number of kth neighbours. In MgO, N1 = 6 and N 2  = 12. Apart from 
an additive constant a, that qualitatively expresses internal quantum-mechanical 
energy of the ions, E;) should be approximately equal to the lattice energy ELQP) 
evaluated with the quantum-mechanical cluster. Thus 

ELQ) = E$) + a,. (3.5) 

Then, from equations (3 .4)  and ( 3 . 3 ,  

E iQ) (d1 ,  d2) - EL”(d1, d2) - 6B, l (d l )  - 12B,,(d2) - U,  = 0. (3.6) 

Thus for a fixed value of d 2 ,  if we know ELQ) and EAo) for four values d1,] ( j  = 1 , 2 ,  3 , 4 )  
of d l ,  we should be able to solve for the four unknowns x1 = Anl, x2 = p n l ,  x3 = Cnl,  
x4 = al, = [a ,  + 12B,,(d2)]. In this case, equation (3 .6)  is of the form 

f,, (xl ,  x2, x3, x4)  = 0 j = 1 , 2 , 3 , 4 .  (3 .7)  

Similarly, for a fixed value of d i ,  if we know ELQ) and ELo) for four values d2,! of d 2 ,  
we can solve for y1 = An*, y 2  = pn2,  y 3  = Cn2, y 4  = a: = [a ,  + 6 B n l ( d 1 ) ] .  In this case, 
equation (3.6) is of the form 

gn,(y1,y,,y3,Y4) = 0 j = 1 , 2 , 3 , 4 .  (3 .8)  

We have used a library routine that minimises 

and similarly for g , ,  reporting the converged values of S. Since we require energies 
accurate to about 0.05 eV, we have defined convergence to be for S i  4(0.05)* = 
lo-* eV. In practice, we renormalised ELQ) to be approximately equal to E;) ,  so that 
large values of a; and a: would not emerge, and we used starting values of A ,  p and 
C equal to host-lattice anion-cation and anion-anion values. 

In table 9, we show the fixed and variable values of d l  and d2 that were used. They 
include fairly large distortions in order to reproduce the anharmonic features of the 
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Table 10. Shell model short-range parameters in MgO: H"- ( n  = 1,2):  see equation (3.3). 

Ion pair 4 e V )  P(A) C(eV. A6) 

02--MgZ+Q 1275.2 0.3012 0 

H--Mg2' 538.14 0.2854 0 

HZ--MgZ-v 1856.41 0.3132 0 

0 2 - - 0 2 - u  22 764.3 0.1490 20.37 

H--02- 48 262.72 0.3067 3734.19 

HZ--02- 77 143.25 0.2977 4936.64 

a Sangster and Stoneham (1981). 

Table 11. H"- in MgO (n  = 1, 2): first- and second-neighbour equilibrium positions d, and 
dz  (fraction of perfect lattice distance) in the shell model and molecular cluster respectively. 

Shell model Cluster 

n = l  d ,  1.02 1.03 
d2 0.97 0.97 

n = 2  dl 1.03 1.03 
d2 0.97 0.97 

short-range interactions. In table 10, the values obtained ,3r A ,  p and C are given for 
H"- in MgO, along with those for host-lattice species that were used throughout this 
work (Sangster and Stoneham 1981). 

This method has been previously applied by Meng et a1 (1988) for Cu' in NaF and 
in KCl. In those cases, it is reasonable to neglect Cu' short-range interactions with 
second-neighbour cations, and to assume that Cu' is essentially unpolarisable. It is 
then possible to apply the resultant shell model to analyse Cut diffusion by the vacancy 
mechanism, not only in the original hosts, but assuming transferability, to the other 
fluorides and chlorides. In the present work, the polarisability of Ha- is not likely to 
be negligible, so that before any applications can be made the shell parameters (core 
coupling and charge) would need to be determined. However, as a check on the 
consistency of the method we have used the shell model results of table 10 to calculate 
the first- and second-neighbour relaxations to equilibrium. They are given in table 11, 
and are found to be comparable with the full-cluster values obtained in § 3.4 .  In all 
cases but one, the small discrepancies (less than 0.01a) are a measure of the accuracy 
of the approximations described at the beginning of this section. Clearly, because of 
the reservations expressed earlier about our quantum-cluster results for [H2-]", the 
present results for that ion should not be relied upon. 

The method described in this section derives shell model parameters from a series 
of large, accurate calculations. Since shell model calculations are so much less time- 
consuming than quantum-cluster calculations, if the kind of applications made by 
Meng et a1 (1988) turns out to be valid by comparison with experiment, it will provide 
a very efficient extension of a single defect analysis to a large number of configurations, 
systems and processes. 
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4. Perspective 

The central feature of this work has been to describe and analyse the ground states 
of point defects in MgO. The excited states which, with the exception of the F+ centre 
(§ 3.6), have been ignored, could be dealt with by the same methods. These methods 
include quantum-mechanical treatment of the defect center, the ion-size effect of the 
nearby ions, polarisation and distortion of the surrounding lattice, and both physical 
and mathematical consistency among all elements of the model calculation. Basic 
assumptions that we shall not discuss here are the static-lattice approximation, and 
the assumption that the shell model can adequately represent the embedding lattice. 
We now discuss the extent to which our calculations have implemented the methods 
listed above. 

The quantum-mechanical treatment of the defect centre requires a correlation 
correction in order to be complete. The Rayleigh-Schrodinger perturbation theory 
has been shown to be effective for such work (Goalwin and Kunz 1986) and has been 
adapted to the present methods (Kunz et a1 1988). The ion-size effect includes 
both Hartree-Fock ions and Kunz-Klein potentials in a mathematically consistent 
formulation (Kunz and Klein 1978, Kunz and Vaill988). The Hartree-Fock treatment 
of nearby ions could be improved by optimising the Gaussian exponential coefficients 
CY in the presence of the defect, and by using less restrictive contractions in the basis 
functions. The accuracy of the Kunz-Klein potentials could also be improved. In the 
present work, we believe that such corrections would have little effect, except in the 
case of [H2-]", where a larger Kunz-Klein region is called for, and in the case of the 
F+-centre excited state, where improved basis functions for second-neighbour 02- 
ions are needed. While total consistency among all elements of the calculation would 
require more iteration than we have given it, from defect basis optimisation, to near- 
neighbour optimisation, to enlarging the cluster, to relaxing the cluster, we believe 
that our results are substantially converged to an accuracy that gives a true qualitative 
picture of most of the defect features. The exceptions are [H2-I0 and F+ excited state 
as mentioned above and, in addition, further refinement of second-neighbour 02- 
ions in the F+-centre ground state seems necessary, as mentioned in § 3.3, to resolve 
the question of where the state lies relative to the valence band. None of the 
improvements to the present work described in this paragraph has any intrinsic 
theoretical or computational difficulty. However, the present work, and to a greater 
extent any follow-up, requires access to quite liberal computing facilities. 

5. Summary 

We now briefly review what has been achieved by the present work. First, a basis set 
contraction for 02- in MgO has been derived by the cluster method of ICECAP. The 
same method could be used to develop improved basis sets for host-lattice ions in a 
variety of crystals. Second, the Hartree-Fock ground states of F and [W]' centres 
have been determined in calculations that are both mathematically and physically 
consistent. The same can be said of the F+ centre, except that while casting further 
light on the question of the location of the ground state relative to the valence band, 
the issue has not been definitely resolved. The corresponding analysis of the [H2-I0 
centre is incomplete, requiring more extensive treatment of ion-size effects to deter- 
mine the extent of localisation of the defect. The spin density analysis of F+ and [H2-Io 



F-type centres and hydrogen anions in MgO 2819 

centres clearly illustrates the sensitivity of the results to basis set, cluster size, and 
lattice relaxation, thereby demonstrating how essential all three elements are to a 
correct description of such defects. Preliminary analysis of the F+ centre's excited 
state graphically demonstrates how inadequate treatment of the ion-size effect can 
lead to qualitatively wrong results, by spurious electron spilling, or tunnelling. While 
the single-centre treatment of such defects is shown once again to be unreliable in 
some respects, its very simplicity may give qualitatively correct features such as [M2-I0 
localisation and relative energies of the different defects. Finally, it is demonstrated 
how cluster calculations can be used to derive shell model parameters for impurities, 
and could be applied to host-lattice interactions as well. 

In summary, this work demonstrates the practicality of the ICECAP methodology 
in simulating rather subtle physical features of electronic defects, and clearly identifies 
details of the procedure that need refinement or extension. 
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